Съдържание

<table>
<thead>
<tr>
<th>Съдържание</th>
<th>Страница</th>
</tr>
</thead>
<tbody>
<tr>
<td>Съдържание</td>
<td>1</td>
</tr>
<tr>
<td>Интернет технологията</td>
<td>3</td>
</tr>
<tr>
<td>Въведение</td>
<td>3</td>
</tr>
<tr>
<td>Същност и структура</td>
<td>3</td>
</tr>
<tr>
<td>История на Интернет</td>
<td>6</td>
</tr>
<tr>
<td>Развитие на Интернет</td>
<td>8</td>
</tr>
<tr>
<td>Основни услуги</td>
<td>9</td>
</tr>
<tr>
<td>Адреси на ресурси в Интернет</td>
<td>11</td>
</tr>
<tr>
<td>Организацията в Интернет</td>
<td>12</td>
</tr>
<tr>
<td>Адресите в Интернет</td>
<td>14</td>
</tr>
<tr>
<td>IP (Internet Protocol) Адреси</td>
<td>14</td>
</tr>
<tr>
<td>Символни адреси и имена на области (домейни)</td>
<td>16</td>
</tr>
<tr>
<td>E-mail адреси</td>
<td>17</td>
</tr>
<tr>
<td>Идентификатори на ресурси</td>
<td>17</td>
</tr>
<tr>
<td>Маршрутизация</td>
<td>18</td>
</tr>
<tr>
<td>Клиент/сървър модела</td>
<td>20</td>
</tr>
<tr>
<td>Предназначение и произход</td>
<td>20</td>
</tr>
<tr>
<td>История на еволюцията на клиент/сървър модела</td>
<td>20</td>
</tr>
<tr>
<td>Клиент/Сървър</td>
<td>21</td>
</tr>
<tr>
<td>Клиент</td>
<td>21</td>
</tr>
<tr>
<td>Сървър</td>
<td>22</td>
</tr>
<tr>
<td>Връзката между клиента и сървъра</td>
<td>22</td>
</tr>
<tr>
<td>Двуслоен клиент/сървър модел</td>
<td>22</td>
</tr>
<tr>
<td>Трислоен клиент/сървър модел</td>
<td>22</td>
</tr>
<tr>
<td>Приложение на модела клиент/сървър в Интернет</td>
<td>23</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>27</td>
</tr>
<tr>
<td>Хипертекстова и хипермедийна информация в Интернет</td>
<td>28</td>
</tr>
<tr>
<td>Хипертекст</td>
<td>28</td>
</tr>
<tr>
<td>Хипермедия</td>
<td>29</td>
</tr>
<tr>
<td>Осъществяване на връзка между отделните документи</td>
<td>29</td>
</tr>
<tr>
<td>Hypertext Transfer Protocol</td>
<td>29</td>
</tr>
<tr>
<td>Hypertext Markup Language</td>
<td>30</td>
</tr>
<tr>
<td>Търсене в интернет</td>
<td>30</td>
</tr>
<tr>
<td>Методи на търсене</td>
<td>31</td>
</tr>
<tr>
<td>Виртуални библиотеки</td>
<td>31</td>
</tr>
</tbody>
</table>
Указатели ... 32
Машини за търсене .. 32
Супермашини ... 32
Изрази, използвани при търсене по ключова дума или фраза .. 33
Булеви оператори .. 33
Плюс/минус ... 33
Фраза .. 33
Пресичане .. 34
Как да търсим успешно? .. 34
Търсене по ключова дума ... 34
Търсене по тема ... 35
Полезни насоки и информация ... 35
Речник на термините .. 37
Интернет технологията

Въведение

Интернет е технология, позволяваща информационно разпространение, сътрудничество и взаимодействие между индивидите и техните компютри, без да е от значение географското им положение.

Факт е, че голям процент от населението на планетата вече е привикнало да потърси в глобалната мрежа и обикновено да намери - отговор на всеки въпрос, който може някога да му хрумне. Чрез мрежата може за миг да се изпращат съобщения и документи по целия свят, да се пазарува от друг континент, да се послуша нова музика, да се разиграят акции на фондова борса, да се надникне в световните художествени галерии, да се прочете някоя хубава, нова книга, да се поиграе на някоя увлекателна игра, да се побъбри с познати или непознати, да се научи най-новото от родното ни място, да се вземе безплатен софтуер, да се управлява банковата ни сметка, или пък просто да се пропилят няколко часа, носейки се по вълните на виртуалната забава.

Същност и структура

Интернет е глобална мрежа от мрежи, която обслужва хиляди потребители по света, използвайки различни протоколи.

Интернет е световно разпространена съвкупност от мрежи, шлюзове, сървъри и компютри, използващи общ набор от телекомуникационни протоколи за връзка помежду си. Тези протоколи представляват правила, които описват начина на комуникация между два компютъра в Интернет.

Интернет осигурява информация до ресурси от цял свят. Без да напускате дома или офиса си, имате възможност да посетите Ирландия, Австралия или всяка друга страна по света. Има големи количества информация, които са достъпни от университети, правителствени и военни организации или библиотеки.

За свързването с Интернет е необходим интернет доставчик, наричан още ISP (Internet Service Provider), който предоставя начин на свързване към мрежата - ISDN, DSL, кабелен модем, радио, наета линия и т.н.
Основния Интернет протокол е TCP/IP. Той представлява набор от протоколи (протоколен пакет или протоколен стек) заложени в основата на Интернет. Този набор от протоколи включва IP, TCP, UDP, ICMP и др. Всяка съвременна операционна система има вградена в себе си реализация на протоколите TCP/IP, чрез които осигурява достъп до Интернет.

Основната адресна структура на протоколния пакет TCP/IP е уникален адрес, наречен IP адрес. Този адрес се използва за адресиране на всички компютри и устройства в Интернет, и се състои от четири октета (байта). Октет е аналогично понятие на байт, т.е. един октет (байт) е число от 0 до 255. Следователно IP адреса се състои от 4 байта. Четирите байта се комбинират и образуват IP адрес, който включва два основни компонента:

- адрес на мрежата в Интернет, към която принадлежи адресираният компютър или устройство;
- адрес на компютъра (устройството) в рамките на неговата мрежа.

IP адресите се използват, за да могат компютрите да се разпознават помежду си. Тъй като тези низове от числа се запомнят и въвеждат трудно е създадена системата за имена на домейни (Domain Name System - DNS). Имената на домейни (области) позволяват към IP адресите да се асоциират буквено-цифрови имена, с чиято помощ компютрите могат да се групират по географски принцип или по тяхната принадлежност към някаква организация.

Всяко име на област е изградено на йерархичен принцип – състои се от отделни части разделени с точка, като най-дясната част представлява име на област, която е най-високо в йерархията (то се нарича още “top-level domain” - имена на области на най-високо ниво). Съществуват над 200 имена на области на най-високо ниво.

Ако името е от три символа, то означава област от определен тип. Ето няколко различни типове области:

- **com** - големи корпорации или бизнес организации;
- **edu** - образователни институции;
- **gov** - правителствени организации (без военни);
- **mil** - военни организации;
- **net** - доставчици на Интернет услуги;
- **org** - други видове организации.
Когато последната част е от два символа, обозначава област държава. Ето и няколко примера за обозначения на държавни области:

- **au** – Австралия;
- **bg** – България.

Обикновенно втората (отдясно наляво) част от името се използва за идентифициране на организация, а всяка следваща част е или име на по-малко подразделение, или (когато е на първо място) име на компютър или устройство. Така примера **www.ripe.net** - може да се дешифрира като име на компютър (**www**), предлагаш услугата WWW в организацията **ripe**, чиято дейност е свързана със световната мрежа Интернет (**net**).

За преобразуването и съответствието между имена и IP адреси се грижат специализирани компютри в Интернет, наречени DNS сървъри, или сървъри на имената. За всяка една област в Интернет трябва да има поне един сървър на имената. По този начин цялата йерархия от имена на области в Интернет се реализира чрез йерархията от сървъри на имената.

Повечето приложения в Интернет работят по схема, която най-общо се нарича клиент/сървър. Обикновено клиента е програма на локалния компютър на потребителя в Интернет, а сървър е програма разположена някъде на далечен, но свързан в Интернет компютър. Клиентът заявява, че се нуждае от някаква услуга (информация) и сървърът отговаря като доставя необходимата информация. Типични приложения в Интернет, които отговарят на тази схема (на този модел) са Web, DNS, электронна поща (e-mail), прехвърляне на файлове (FTP), и много други. Например, когато искаме да разберем IP адреса на компютъра **www.ripe.net**, нашият компютър (клиент) трябва да се обърне към DNS сървър (сървър) и да поисква от него тази услуга. DNS сървъра отговаря с конкретния IP адрес: **193.0.2.123**, като го изпраща на клиента (нашя компютър).

Съществува едно устройство (комплютър), което е отговорно за правилното свързване между всички други компютри и устройства в Интернет – маршрутизатор.

Маршрутизатора (**router**) представлява специализирани устройство, което насочва пакета данни в правилната посока, според IP адреса на получателя. Възможно е информацията да премине през няколко маршрутизатора, преди да достигне крайната си цел.
История на Интернет

Идеята за създаване на ARPAnet, на базата на която в началото на 90-те години се появи Интернет в съвременния си вид, се заражда още по време на студената война през 60-те години на миналия век. Необходимостта от разработването на тази информационна мрежа бе предимно за нуждите на военните и Министерството на Отбраната на САЩ. Разработката на тази мрежа се финансира и подпомага от Правителството на САЩ, както и от други неправителствени организации и много и скоро се разви и усъвършенства, като обедини в себе си множество университети, изследователски институти и организации.

През август 1968 г. Министерството на Отбраната обявява конкурс за създаването на ARPAnet, който е спечелен от компанията BBN - (Bolt Beranek and Newman) през месец декември същата година. Основен приоритет на компанията е създаването на един от фундаменталните компоненти - пакетите за превключване, наречени комуникационни възли (IMP). През 1969 г. BBN инсталира първия IMP компютър в Калифорнийския Университет в Лос Анджелис, като по този начин предостави достъп до първия host-компютър и даде възможност на първата пакетна мрежа да осъществи връзка с Изследователския Институт в
Станфорд, Университета в Санта Барбара и Университета в Юта. С осъществения експеримент се доказва способността на ARPAnet, чрез използването на IMP, да разделя информацията на относително малки пакети; да транспортира тази информация до отдадечения компютър с предварително известен адрес; да проверява за грешки в транзакцията; да изпраща и повредените пакети; и да събира пакети в/от отдадечени места. Това е принципа залегнал в основата на ARPAnet.

В началото на 80-те години възниква и необходимостта от създаването на мощни компютърни центрове, които да бъдат свързани с високоскоростни програмни мрежи и чиято цел да бъде предоставянето на данни и информация за осъществяването на научно-техническото развитие. В 1982 г. Националната Научна Фондация (NSF) предлага разширие на съществуващата ARPAnet, наречена (NSFNET), чрез използването на която става възможно увеличаването на скоростта на транзакцията от 56 Килобайта в секунда до 1,5 Мегабайта в секунда. От 1988 г. NSFNET се превръща в операционна система. През 90-те години се прави решителна крачка към създаването на съвременния вид на Интернет, процес предшестван от прекратяване на функционалното използване на ARPAnet. За първи път програмни мрежи за осъществяване на търговски отношения са свързани към NSFNET, посредством Асоциацията за Търговски обмен в Интернет (CIX), което предостави възможност на бизнес и международните икономически отношения да навлязат в съвсем ново измерение, а и не само това - даден им бе шансът да се интегрират в нова информационна инфраструктура. Самата идея за
възникването и бурното развитие на Интернет предоставя възможност на всички хора от която и да е страна да се потопят в световния океан от информация.

Развитие на Интернет

ИНТЕРНЕТ е глобално свързана мрежа от компютри. Той дава възможност на хора, фирми, образователни институции, правителствени агенции да комуникират от произволно отдадени географски области.

Спецификацията за ARPANET е съставена през 1968 година, а през януари 1969 година Cambridge-based computer company, Bolt, Beranek и Newman (BBN) получават контракт за дизайн и развитие на ARPANET.

В края на 1969 г., 4 компютъра са интегрирани в оригиналното очертание на Интернет - първото появяване на ИНТЕРНЕТ. От началото на 1970 г. броя на компютрите включени към ARPANET нараства значително.

През октомври 1972 г. се провежда международна конференция за компютърните комуникации, на която BBN организира публична демонстрация на ARPANET.

През 1980 г. се появяват нови мрежи на други групи от хора и организации. Това са BITNET (Because It's Time NETwork), започнала като корпоративна мрежа и CSNET (Computer Science NETwork), създадена от обединената работа на няколко компютърни специалисти. В началото те не са част от Интернет, но по-късно се интегрират към него.

През 1984 г. ARPANET е разделена на две мрежи: MILNET и ARPANET. MILNET обслужва нуждите на армията, а ARPANET се занимава с изследователска работа. По-късно, тяхното обединение е наречено ИНТЕРНЕТ.

1989-1996 е един основен период, който знаем като ИНТЕРНЕТ, отчитайки факта, че оригиналния ARPANET е изместен поради изключително бързото нарастване на мрежовите операции в САЩ и света.

През последните няколко години Интернет е най-голямата среда за обмен на информация. Много хора работят в нея и техният брой непрекъснато се увеличава.
Основни услуги

Популярността на Интернет се дължи на услугите, които предлага. Свободният трансфер на съобщения между различни хора и организации е много разпространен. Получаването на новините на деня, възможността за търсене и намиране на информация за спорт, икономика, музика и други неща са предимство, което не може да бъде предоставено чрез други средства.

Основните предлагани Интернет услуги са:

− **File transfer** - FTP - File Transfer Protocol (Протокол за пренасяне на файлове). Дава възможност за прехвърляне на файлове от вашия компютър до друг и обратно. За целта на единия компютър трябва да работи програма FTP-сървър, а на другия - програма FTP- klient. Достъпа се определя от програмата-сървър, която изисква всеки потребител да има име и парола. Поради големия брой брои сайтове, поддържащи услугата FTP е трудно да се следи на кой компютър какви файлове има. Като интерактивно средство за търсене на файлове, намиращи се на FTP сървъри може да се използва протокол (услуга), наречен *Archie*.

− **Telnet (Remote login)** - това е една от първите исторически възникнали услуги в Интернет. Може да се използва за работа като отдалечен терминал на Telnet сървър в Интернет. Когато се свържете с някой такъв сървър в Интернет, вашият компютър работи така, сякаш клавиатурата му е вързана към отделения компютър. Можете да стартирате програми, които ще се изпълняват на сървъра на другия край на света, все едно, че е пред вас.

− **E-mail** - Електронната поща, т.е. изпращането и получаването на електронни съобщения, е една от най-широко използваните в момента операции в Интернет. E-mail се използва в повечето търговски он-лайн услуги и за много хора е основната причина за достъп до Интернет. За да изпратите електронно съобщение, трябва да зададете адреса на получателя. Този адрес се състои от идентификатор на потребителя, следван от знак @, след което идва местоположението на компютъра – сървър за електронна поща на получателя. Например, електронният адрес на президента на САЩ e president@whitehouse.gov. Изпращачът също трябва да има
valid email address. Each user receives their address when they register on a mail server, where an automatic mailbox is created for them. For security reasons, each user must authenticate on their mail server, entering their identifier and password, to send and read incoming messages.

Network file systems (NFS) - Provides the ability to your computer (client) to access files on another computer (server). Network file systems create an illusion that disk or devices from one system are directly connected to other systems. There is no need to use special programs to access files and resources on other systems. A particular interest recently is the possibility of combining this service with the WWW service.

Remote printing - Provides the ability to print materials located on your computer (client) through another computer (server), if it is connected to a printing device (printer).

Gopher - Despite FTP working well for file transfer, it cannot handle file systems spreading over many computers. A better system for file transfer, called Gopher, was created with this goal. Gopher is a widely used tool in the Internet. To use this service, you need a program - a client, which allows you to browse available information without knowing where exactly the materials are. It allows you to search a list of resources and then helps to send the material to you. Computers - servers for Gopher are connected to each other with distributed indexes in a search system, called "Gopherspace". Gopherspace is a distributed information service where the information is organized in a hierarchical structure. The most well-known systems are the Gopher variant of Archie (named Veronica)
и индексираната система за търсене WAIS (Wide Area Information Server).

− **USENET** - Network News (USENET) е най-разпространената новинарска услуга, използваща протокол NNTP (NNTP е протокол в Интернет, предназначен за разпространение, запитване, извличане и публикуване на новини). Тя предлага бюлетин бордове, чат-стаи (chat rooms) и мрежови новини (Network News). Network News е голяма система с около 5000 конференции, наречени новинарски групи (newsgroups), които са достъпни по 24 часа на ден 365 дни в годината. За да имате достъп до тези новинарски групи, трябва да използвате специална програма-кликент, с чиято помощ можете да участвате в желаната група. Дискусионните групи и чат-стаите могат да бъдат чудесен източник на информация и съдействие за технически проблеми. Те могат да бъда източник на информация за хобита, забавления, пътуване, места за политически дебати на живо, осигурявайки възможности за събиране на групи от хора с общи интереси.

− **WWW (World Wide Web)** - World Wide Web (или само Web) е мултимедийната услуга в Интернет, съдържаща огромни хранилища на хипертекстови документи, написани на езика за маркиране на хипертекст (Hypertext Markup Language - HTML). Хипертекстът е метод за представяне на текстове, изображения, звук и видео, които са свързани помежду си в непоследователна плетеница от връзки. Хипертекстовият формат позволява на потребителите да преглеждат темите в произволен ред. Има инструменти и протоколи, които служат за изследването на всевъзможните налични такива документи в Интернет. Тези инструменти помагат за намирането на ресурси и тяхното пренасяне между компютрите.

Адреси на ресурси в Интернет

Всеки ресурс в Интернет има собствен идентификатор, наричан още унифициран локатор на ресурси (Uniform Resource Locator - URL). Тези идентификатори указват сървъра, до който трябва да се осъществи достъп, метода на достъп и самото място върху сървъра, където се намира ресурса.

Адресите URL имат три части:
− Име на протокол (**http://**), което се отнася до метода (услугата), използван за достъпа до информацията. Има фиксирани имена на протоколи (услуги) за всички методи за достъп до Интернет, сред които са **gopher**, **ftp** и **telnet**.

− Име на сървър (**kmk.fmi-plovdiv.org**) е името или адреса на сървъра в Интернет, който предоставя описаната в предишната част от URL услуга в цялата мрежа.

− **Разположение на ресурса (/InternetTechnology.pdf)** - определя разположението на ресурса във файловата структура на компютъра (сървър). То включва имената на поддиректориите, ако има такива, а също така и името на файла или ресурса (**InternetTechnology.pdf**).

Организацията в Интернет

Интернет е свободно организирано международно взаимодействие от автономни, но свързани мрежи, осигуряващи комуникация от типа компютър-компютър, чрез доброволно използване на протоколи и процедури, дефинирани от стандартите на Интернет. По света съществуват и изолирани "интернети", т.е. мрежи, които не са свързани с Интернет, но използват неговите стандарти, както и международни компютърни мрежи, които ползват други ("неинтернетски") стандарти за връзка, например BITNET. Сега обаче много от големите "неинтернетски" мрежи се приобщават към Интернет чрез входно-изходни точки или просто постепенно се разтварят в него, като възприемат стандартите му.

Интернет не се притежава от никого. Участието в Интернет всъщност се свежда до приемане и използване на неговите стандарти. Много от доставчиците на Интернет не само признават споменатите стандарти, но и
правят публични своите мрежи. Това доброволно участие на фирми и организации дава днешния облик на Интернет.

Основни технически и технологични понятия в Интернет

- **Компютърна мрежа** (Computer Network) - компютърна мрежа е среда, в която два или повече компютъра са свързани помежду си посредством кабел, модем или друг вид връзка и си взаимодействват в тази среда с помощта на специализирано програмно осигуряване, инсталирано на всеки един от тях;
- **Възел** (Node) - се нарича всеки един компютър или устройство, свързан към мрежата;
- **Локална мрежа** (Local Area Network - LAN) - компютърна мрежа, която обединява компютри, периферни, мрежови и други устройства разположени в отделна сграда или в малка географски ограничена област;
- **Глобална мрежа** (Wide Area Network - WAN) - компютърна мрежа, която обединява компютри, периферни, мрежови и други устройства;
- **Сървър** (Server) - система/компютър, която осигурява услуги за други системи или компютри в компютърната мрежа.
- **Клиент** (Client) - система/компютър, която ползва предоставените от сървъра услуги;
- **Клиент/Сървър** (Client/Server) - основен комуникационен модел в съвременните компютърни мрежи, при който за едно приложение се използват едновременно ресурсите на сървъра и клиента. Трябва да се има предвид, че сървърът и клиентът се различават по програмните си функции, а не по своето месторазположение, т.е. могат да бъдат разположени на еднин и същи компютър. Всеки клиент в този смисъл ползва ресурсите на сървъра. Свързването на един потребител към друга машина от мрежата реализира този модел и потребителя се явява клиент на отсрещната машина;
- **Интернет** (Internet) - състои се от две или повече мрежи, свързани помежду си посредством специализирани устройства, които осъществяват маршрутизацията на данните между различните мрежи на основата на множеството от протоколи TCP/IP;
- **Мрежови Протоколи** (Network Protocols) - правила, които описват начина на комуникация между два компютъра в мрежа;
– **Мост** (Bridge) - специализирано мрежово устройство за връзка между две локални мрежи (или два сегмента от една локална мрежа). Устройството мост (Bridge) няма собствен IP адрес и остава невидимо за потребителя. Неговото предназначение е да минимизира трафика между отделните сегменти (локални мрежи) които свързва, като пропуска само необходимия трафик и поддържа таблица от всички работещи мрежови устройства свързани към сегментите (локалните мрежи) които той съединява;

– **Маршрутизатор** (Router) - понякога се използват термините шлюз (gateway). Това е специализирано мрежово устройство отговорно за реализирането на връзката между произволни два компютъра в Интернет, като всеки един от тези компютри е свързан към своя локална мрежа. Обикновено всеки маршрутизатор има поне два различни мрежови интерфейса, чрез които той се свързва към различни IP мрежи. Когато получи информация за препредаване, маршрутизатора или разпознава за кой компютър (устройствостро) от директно свързаните към него IP мрежи е предназначена тази информация и му я изпраща, или пък я препредава на друг маршрутизатор. Компютърните мрежи, свързани посредством маршрутизатор могат да бъдат разнотипни. Маршрутизаторът е видим за потребителите с имената и адресите на всеки от своите мрежови интерфейси. При конфигурирането на компютър за работа в Интернет е задължително да му секаже неговият маршрутизатор, чрез който той ще се свързва с останалите компютри в Интернет;

– **IP пакет** (IP Packet, IP Datagram) - това понятие определя единицата пренасяна по мрежата потребителска информация в съответствие с множеството протоколи TCP/IP. Понякога packet се свързва с физическото ниво на мрежата, докато datagram с нивото на IP протокола. В литературата обаче тези две понятия често се смесяват, като най-употребяваното е пакет - packet.

Адресите в Интернет

IP (Internet Protocol) Адреси

Адресите на възлите (компютрите) в Интернет (IP адреси или номера) са 32-битови числа, обикновено записвани като 4 десетични числа (октети
или байте, всяко между 0 и 255), разделяни с точки, например 194.141.13.68. Всеки един IP адрес се състои от две части: адрес на мрежа и адрес на компютър в рамките на неговата мрежа. В зависимост от това каква част от IP адреса се използва за адрес на мрежата и каква за адрес на компютъра, IP адресите се делят на 3 основни класа.

Мрежите от клас A имат адреси, които използват първия байт за номер на мрежа, и започват с числата от 0 до 126 (първият бит на първия байт винаги е 0). Останалите 3 байта предоставят 24 бита за номериране на компютрите в една такава мрежа. Броят на мрежите от този клас може да бъде само 126, но това са изключително големи мрежи: ARPANET и още няколко търговски мрежи.

Средно-големите организации използват мрежи от клас B. Адресите в него са такива, че първите два байта служат за означаване на номера на мрежата, като първите два бита от първия байт са задължително “10”. Така тези мрежи се номерират от 128.1 до 191.254 (числото 127 в първия байт, както и числата 0 и 255 във втория, са запазени за специални цели). Последните два байта дават 16 бита за адресиране на компютрите в рамките на мрежата, което осигурява адреси за 64516 машини. Броят на всички мрежи от този клас е 16256.

Малките организации, които са и най-много на брой, получават адреси от клас C. Мрежите от този клас се номерират от 192.1.1 до 223.254.254 (първите три бита от първия байт задължително са “110”), което прави общо 2064512 броя мрежи. Във всяка такава мрежа се допускат най-много до 254 компютъра.

Адресите, започващи с число над 223, образуват класовете D и E и са запазени за специални цели.

Отделно във всеки клас са заделени специални адреси, които не се използват в Интернет, а само при специални схеми на адресиране използвани t.нар. прокси сървър (proxy server) или динамично преадресиране с NAT (Network Translation Table). Този вид адреси могат да се използват и в мрежи, които не са свързани в Интернет. Наричат се частни адреси (private addresses). Частни са адресите от клас A започващи с първи байт 10, адресите от клас B в диапазона 172.16 – 172.31 и адресите от клас C започващи с 192.168.
Големите организации обикновено разделят своята мрежа на подмрежи. Например при мрежа от клас B, в която компютрите се номерират чрез последните два байта z.t на 32 битовия адрес x.y.z.t, е възможно първият от тези байтове z да означава номер на подмрежа. Така полученото разделяне няма никакво значение за външните за институцията мрежи, защото оттам всичките компютри в мрежата x.y се тълкуват по еднакъв начин за адресиране. Но вътре в разглежданата институция компютърите, притежаващи адреси с различни стойности в полето z, се разглеждат като принадлежащи към различни мрежи.

Символни адреси и имена на области (домейни)

Софтуерът за адресиране работи с 32-битови адреси, но потребителите очевидно предпочитат да назовават компютърите с имена. Когато Интернет все още не е бил голям, този проблем се е решавал лесно чрез използване на таблица, съдържаща пълното съответствие между номера и имената. Такава таблица тогава, поради малкия си обем е могла да се постави във всеки възел. Сега компютрите са твърде много и такъв подход не може да се осъществи. Налага се използването на области (домейни) от имена и съответни сървъри (Name Servers) - DNS. Това води и до децентрализация на институцията, която е авторизирана да регистрира имената. Сървърите на имена формират дървовидна структура, обикновено с 3-4 нива на дълбочина. Самите имена следват тази дървовидна структура. Например: компютърът org.omg.bbb.bg. За да намерите този адрес, вие трябва да се консултирате с три сървъра. Първо трябва да запитате централния сървър къде е сървъра, обслужващ областта bg. След това сървърът на bg трябва да ви посочи сървъра, обслужващ bbb. Оттам ще ви се посочи сървъра за omg, който накрая ще ви даде адреса на org.omg.bbb.bg. На практика за всяко ниво има повече от един сървър, обслужващ нивото, което се налага от съображения за сигурност при повреда на някои от компютърите. В повечето случаи последната съставка на името сочи типа на организацията или държавата, в която се намира компютърът:

<table>
<thead>
<tr>
<th>Област</th>
<th>Наименование</th>
</tr>
</thead>
<tbody>
<tr>
<td>.com</td>
<td>Комерсислални организации - не само в САЩ</td>
</tr>
<tr>
<td>.edu</td>
<td>Образователни институции - най-често в САЩ</td>
</tr>
<tr>
<td>.gov</td>
<td>Правителствени организации в САЩ</td>
</tr>
<tr>
<td>.mil</td>
<td>Военни организации в САЩ</td>
</tr>
</tbody>
</table>
Екипи и организации мрежови администратори

Организационни структури включително и неправителствени

Австралия
Белгия
България
Канада
Испания
Финландия
Франция
Ирландия
Италия
Русия
Англия

E-mail адреси

Електронната поща работи аналогично на обикновената. Написвате писмо, но не на хартия, а чрез клавиатурата на вашия персонален компютър, което можете да прочетете на екрана. Адресиране това писмо до компютъра на човека, който трябва да го получи и го изпращате. След няколко минути (при лошо техническо състояние на компютърните комуникации този срок може да се удължи до часове или дни) адресатът го получава. Разбира се, за да направите това, трябва да се научите да боравите с подходяща програма, сходна с вече сравнително добре известните програми, наречени текстови редактори. Адресът, който се използва обикновено е състои от идентификатор (означение) на потребителя, съединен чрез знака "@" с адреса на неговия пощенски сървър или областта, където се намира този сървър. Например: user_name@tralala.bg.

В първоначалният си вид електронната поща е служила само за изпращане на прости текстови съобщения. Сега все по-често чрез нея се изпращат произволни файлове, съдържащи изображения, звук или даже видеофилми. Това в повечето случаи става чрез т.н. attachment.

Идентификатори на ресурси

URL (Uniform Resource Locator) - С нарастването на броя на документите, достъпни за ползване, се е наложила нова методология за
означаването им. Системата URL предлага единен начин за наименуване. Всеки документ (файл) може да се намери чрез неговия универсален индентификатор, който е съставен от три части:

1. Тип на протокола за достъп. Най-старият протокол е ftp и е предназначен за прехвърляне на файлове. При услугата WWW за тип на протокол за достъп се указва http. Допустими са и mailto (за електронна поща), telnet, gopher и др. Първата част завършва с двоеточие (:);
2. Име на компютър, съгласно приетото адресиране в Интернет. Това име се предхожда от две наклонени черти (/);
3. Пълното име (path) на файла, съгласно определените стандарти на използваната операционна система и типа на протокола за достъп. Започва с наклонена черта (/). Може да липсва и тогава се има предвид име по подразбиране -- при протокола http много често това е index.html (зависи от настройките на съответния сървър);

Маршрутизация

В общия случай IP пакетите преминават през няколко мрежи при пътуването си от началната точка на подателя до крайната точка на получателя. За илюстриране на този процес на Фигура 1 е представена схема, в която участват три компютърни системи, два шлюза и три компютърни мрежи. Мрежа 2 е Point To Point връзка, свързваща Шлюз G с Шлюз W. Разположението на компютрите и разстоянието между мрежите e без значение. Компютър A от схемата има директен достъп до Компютър B по Мрежа 1 и пакетите от B ще бъдат изпращани непосредствено към A. Компютър C не може да бъде адресиран непосредствено от компютър A, понеже се намира в Мрежа 3. В практиката са разработени множество варианти за свързване на компютри от различни мрежи. На схемата свързването е осъществено посредством шлюзове, така пакетите между компютрите A и C преминават през Мрежа 1 през Шлюз G, Мрежа 2, Шлюз W и от там в Мрежа 3 за да достигнат до компютър C. Всеки компютър използващ TCP/IP протокол се нуждае от информация осигуряваща достъп до Шлюз или избор на Шлюз. Ако адресираната машина е част от друга мрежа, а това се разбира по мрежовата част от нейния IP адрес, пакетите се пренасочват към
дефинирания шлюз в мрежата на подателя. Основният параметър в алгоритмите за маршрутизация е IP адрес на всеки компютър.

Компютрите A и B имат адреси от една и съща мрежа - 194.6.4. Връзката на Мрежа 1 с Мрежа 2 се осъществява чрез Шлюз G. Той от своя страна има два мрежови интерфейса, един за Мрежа 1 - 194.6.4.1 и друг за Мрежа 2 - 194.6.21. Маршрутизацията се основава всъщност на откриване на номера на мрежата на получателя. При готовност на компютър A да изпраща пакети, се анализира IP адрес на получателя, като се отделя номера на мрежата и се търси в таблицата за маршрутизация дали пакетите да се изпращат към шлюза или получателя е компютър от същата мрежа. Шлюзът е компютър с по-специално предназначение и софтуер. Той осъществява връзката между мрежите към които той е директно свързан, независимо от териториалното им разположение. Дириктивата връзка към всяка една от двете мрежи от примера се осъществява чрез отделен мрежов интерфейс (контролер), и съответния IP адрес за него. Софтуерът прехвърля данните от едната мрежа към другата като ги препраща от единия контролер към другия. Има специално разработени компютърни системи със специализиран хардуер и софтуер за шлюз. От Фигура 1 се вижда, че всяка машина, свързана към мрежата, се идентифицира с определена конфигурация на TCP/IP приложенията. Машината може да бъде клиент или сървър, а в зависимост от конкретното й приложение може да бъде и едното и другото.

Общите за всички конфигурации параметри се заключават в:

1. Параметри специфични за всяка отделна машина - IP адрес;
2. Параметри описващи мрежата - мрежова маска (ако е необходимо);
3. Софтуер за маршрутизация и управление на таблиците с имената и адресите (в случай на шлюз);
4. Зареждане на програми за управление на мрежовите процеси.
Маршрутизация

Клиент/сървър модела

Предназначение и произход

Терминът "клиент/сървър" за първи път се използва при свързване на персонални компютри в мрежа през 80-те години. Действителният клиент/сървър модел започва да печели популярност в края на 80-те.

Терминът "клиент/сървър" описва взаимоотношенията между две компютърни програми, от които едната програма – клиент, прави заявка за услуга към другата програма - сървър, който изпълнява заявката (фигура 3). Въпреки, че идеята за клиент/сървър може да се използва от програми на един компютър, по-важна е идеята, реализирана в мрежа. В една мрежа моделът клиент/сървър предоставя удобен начин за свързване на програми, разпределени в нея.

фигура 2 Маририутизация

фигура 3 Общ вид на модела клиент/сървър

Клиент/сървър архитектурата има за цел да предложи по-добри показатели, в сравнение с централизиранит модели на големите приложения, по отношение на:

История на еволюцията на клиент/сървър модела
− **използваемост** - леснотата, с която потребителят се учи да оперира, да въвежда входни данни и да интерпретира резултатите от системата;
− **гъвкавостта** - леснотата, с която системата може да бъде модифицирана, за да се използва от приложения или среди, различни от тези, за които е била първоначално проектирана;
− **взаимодействие** - възможността на две или повече системи да обменят информация и да използват обменената информация;
− **разширяемост** - възможността на системата да продължи да функционира добре, когато се наложат промени на нейните ресурси, за да се обслужи клиентска заявкка (например на почти всяка система непрекъснато се налага да увеличава пространството за съхраняване на бази от данни).

Клиент/Сървър

Моделът клиент/сървър е основата на днешните разпределени системи. Той е отговор на ограниченията типични за традиционния модел на централизирани ресурси, където главният компютър предоставя достъп до бази от данни чрез множество терминали. Клиент/сървър моделът е отговор и на архитектурата на файловите сървъри в локални мрежи, където системи комуникират с файл сървър, неразполагащ с мощен процесор.

Архитектурата клиент/сървър има три основни компонента: клиент, сървър и връзката помежду им.

Клиент

Клиентът е програмата, очакваща да получи услуга от друга програма. Той взаимодейства с потребителя чрез клавиатурата, дисплея или друго входно/изходно устройство. Клиентът няма директни отговорности към достъпа до данни. Той само изпраща заявки до сървъра и показва върнатите резултати на екрana. Ето защо клиентската машина може да бъде оптимизирана за своята работа. Например, тя няма да има нужда от голямо дисково пространство, за чиято сметка може да подобри възможностите на графичните си устройства. Клиентът извършва следните обработки:

− управление на графичен интерфейс;
− управление на взаимодействията с потребителя;
— other procedures.

Usually, for this, no complex and expensive technique is required. The most common personal computer would be sufficient for anyone who wants to submit an application.

Server

The server is the system that provides a set of services to the client. Its task is to receive and process client requests and return a response. The server needs a large amount of disk space and a powerful processor to process large amounts of information (data).

Connection between the client and the server

The client and server may be on the same computer or on different computers connected over a network. The network makes remote client/server communication possible.

Two-layer client/server model

Client/server architecture is not always limited to communication with one server. Sometimes client requests are distributed among many servers. But in the most common case, the end of the client/server chain is the server with the database, and the client application takes care of the logic and graphical interface (figure 4).

![Two-layer client/server model](image)

Three-layer client/server model

The three-layer architecture appears to overcome the limitations of the two-layer model. It adds a third layer between the user environment and the database server. There are many

![Three-layer client/server model](image)
от варианти за реализирането на междинния слой: **контрол на изпълнението на транзакциите, сървъри за съобщения и сървъри за приложения.** Средният слой може да извършва буферизиране на клиентските заявки, изпълнение на приложения, операции с бази от данни. В добавка на това, средният слой може да разпределя по време и приоритет заявките. Клиентът може да остави заявката си на средния слой, който да извърши всичко необходимо по изпълнението и връщането на резултата (фигура 5). При много голям брой потребители работещи с даден сървър трислойният модел дава по-добри резултати от двуслойния.

фигура 5 **Трислойен клиент/сървър модел**

Приложение на модела клиент/сървър в Интернет

Когато тръбва да се свържат няколко съществуващи информационни системи, се оказва, че повечето функциониращи информационни системи са несъвместими помежду си. Някои от тях работят на твърде стари машини, докато други са изградени на база последния “вик на техниката”, което води и до разнообразие на използваните технологии. Ясно е, че решим ли да пренасяме данни между такива системи няма да ни е лесно и ще трябва да се преборим с редица усложнения. Немислимо е да се унифицират всички системи, защото това би струвало страшно много, а и не всеки разполага с необходимия финансов и човешки потенциал да го направи. Освен това веднъж синхронизирани, компонентите на мрежите трябва да продължат да се подобряват и поддържат хомогенни. Вижда се, че уеднаквяване на компонентите е почти, за да не кажем напълно, невъзможно да се постигне. Решението, което се налага по естествен начин е да слезем едно ниво надолу – щом не можем да уеднаквим компонентите можем да уеднаквим стандартите за пренос на данни между тях.

Това определя следните изисквания към глобалната мрежа:
− да поддържа връзка между хетерогеннни (разнородни като компоненти) мрежи;
− да е независима от времето и разстоянията в комуникационната среда;
− да позволява достъп до информацията и приложенията на различни сървъри чрез единствен клиент, което да се имплементира под форма на универсално клиентско приложение;
− да предоставя възможност за свързване чрез компютърна мрежа или с помощта на достатъчно евтино персонално устройство (налага се модем-а) при възможно най-ниска цена;
− клиентите да имат достъп до въпросната мрежа без значение компютърната си платформа;
− информацията, която ще се разполага на сървърите да е достъпна посредством унифициран стандарт и то независим от платформата, на която работи сървъра.

Ето защо глобалната мрежа Интернет зае толкова важно място сред средствата за комуникация. Едно от основните й качества е, че е хетерогенна и повечето използвани в наши дни информационни и комуникационни технологии могат без проблем да се свържат с Интернет.

За използването на Интернет е важно разбирането на технологиите, чрез които работи самата глобална мрежа. В тази връзка, трябва да е наясно как точно се извършва обмена на информация по Интернет.

Основният модел за обмен на информация в Интернет е модела “клиент/сървър”.

WWW е Интернет услуга, в основата на която стои също модела клиент/сървър и чрез която ще демонстрираме прилагането на модела. Комуникацията между Web клиента и Web сървъра се осъществява чрез използване на протокола HTTP. HTTP (Hyper Text Transfer Protocol) служи за обмен на документи между сървър и клиент, и е част от протоколния стек TCP/IP за управление на поток от данни в Интернет. Всъщност протокола HTTP функционира на базата на проста схема от тип “въпрос–отговор". Клиентът изпраща заявка към сървъра, на която сървърът отговаря. Графично схемата е показана на фигура 6.
Илюстрираният начин за взаимодействие между клиент и сървър не е единствения в Интернет. Освен при HTTP подобна схема на комуникация се прилага и при други протоколи – например FTP (File Transfer Protocol). Общо казано Web сървърът ще изпраща поисканите от клиентите заявки и файлове. Разликата между това дали ще използваме FTP или HTTP сървър се състои в значително по-богатата функционалност на HTTP сървъра. Ако изградим нашия сайт с Web страници под форма на хипермедийни документи, може да сложим освен текста и асоциирани с него графични, звукови или видео компоненти. Тогава, при условие, че клиент е отправил заявка към сайта ни, като резултат ще му бъдат изпратени всички елементи на документа, т.е всички съставни компоненти ще влязат в документа-результат. Освен това според естеството на заявката и средствата за нейната обработка, от сървъра към клиента може да се изпращат и генерирани динамично данни (CGI интерфейс, Java аплет или Active X контрола).

По-долу е показано графично поведението на Web сайт в Интернет среда, обусловено от правилата на трислоен клиент/сървър модел.
фигура 7 Схема на функциониране на Web сайт, базиран на технологията

Клиентът управлява потребителския интерфейс, управлява и контролира входящите данни. Това предпазва мрежата от излишен трафик. Web сървърът свързва клиента, който иска някаква информация, със сървъра, където се намират данните, които са поискани. Сървърът за данни има за цел да обработи данните и заявките (обикновено те са във форма на SQL) и осъществява връзка със сървъра на базата от данни с цел достъп до данните. С цел облекчаване натоварването на сървърите и увеличение на капацитета, с който биха могли да обслужват отправени към сайта ни заявки, работата им може да се разпредели между няколко физически отделени машини, а не върху една единствена.

Схематично, етапите през които трябва да премине Интернет приложението в средата на трислоен клиент/сървър може да се опишат по следния начин:

1. Web сървъра и Web клиента се свързват посредством HTTP протокола и се извлича съответната страница, която се предава на браузъра;
2. Клиента въвежда данните в HTML формуляри, които се визуализират при него от Web браузър;
3. При самото въвеждане има контрол, който се извършва от скриптов език, който може да е Perl, C, JavaScript, VBScript или който и да е друг, ако сме се спрели на CGI метод за трансфер на данни и генериране на динамична HTML страница. При положение, че
използваме Java същата функция извършват специално написани приложения, наречени сървлети;

4. Заявката се изпраща към HTTP сървър с помощта на протокола CGI или се генерира от Java сървлета;

5. Получените данни се обработват и се генерира заявкка, в нашия пример SQL заявкка;

6. Свързваме се с нужните ни данни посредством сървъра на БД;

7. Получените като резултат от изпълнената заявкка данни се вграждат в HTML страница. Целта е да може да се интерпретират от клиента;

8. Резултатите се изпращат на клиента и се визуализират от браузъра.

World Wide Web

World Wide Web има много имена: WWW, Web, W3 и т. н. Някои хора дори смятат, че Web е Интернет. Това обаче, съвсем не е вярно - Web е само една от много технологии. Вярно е обаче, че тази технология стана една от основните причини за разрастването и популярността на Интернет.

World Wide Web е солиден сбор от статични и динамични документи, които са свързани помежду си. С помощта на Web браузър, тези страници се изобразяват на монитора, открити на някой от стотиците хиляди Web сървъри разпръснати по света. Придвижването от един на друг документ се осъществява чрез натискане на левия бутон на мишката върху връзката (link), която отваря този документ в Web браузъра.
World Wide Web е глобална, междуконтинентална информационна мрежа изградена с помощта на следните компоненти: Интернет, стандартен протокол – HTTP, стандартен формат, описващ структурата на документите – HTML, сървъри, обработващи заявките, браузъри (клиенти), изобразяващи документите.

Основният принцип на работа на WWW информационната система се състои в това, че клиентът изпраща заявка в точно специфициран формат към сървъра, който я обработва и резултатът от нея се връща обратно на клиента. Обменът на данни между клиента и сървъра обикновено се реализира по протокола HTTP (Hypertext Transport Protocol), но има възможност да се използват и други комуникационни протоколи като например протокола за трансфер на файлове FTP (File Transfer Protocol).

Web е най-бързо развиващата се част в Интернет. Той получава най-голямото внимание от медиите, предприемачите и големите корпорации като Microsoft и Netscape, които се надяват да оставят своя следа и реализират печалба. Това е така, поради всекидневното използване на услуги и информация в Web от милиони хора, улеснени до такава степен за крайния потребител, че изобщо престават да мислят за Web като нещо ново и непознато доскоро за тях.

Хипертекстова и хипермедийна информация в Интернет

Хипертекст

На теория хипертекста описва метода за организация на информацията. На практика обаче, хипертекста описва способността да се свързват документите заедно, използвайки думи и фрази. Например вземете документ, който съдържа описание на няколко различни маршрути за екскурзия. Името на всеки маршрут може да е свързан към друг документ, който съдържа повече детайли. Когато потребителът натисне връзката в първия документ, браузъра отваря нов документ, с подробна информация за самия маршрут.

Хипертекста има две интересни характеристики:

1. Не налага ред или ъйерархия в информацията – само връзки. Докато много методи се фокусират в подреждането на информацията или
поставянето й в йерархия, хипертекста акцентира на създаването на връзки между информацията. Така хипертекста поддържа информацията организирана по начин, подобен на този в човешкия мозък, описан от Berners–Lee;

2. Позволява информацията да има различни връзки към друга информация. Когато създавате подреден списък или схема, поставяте част от информацията на отделно място в тази организация. Обаче, хипертекста ви позволява всяко парче информация да заема много различни места в тази организация. Може да свържете документ за Скотланд към други документи за пътуване, голф, история на келтите и т.н.

Хипермедия

Термина хипермедия описва какво намерите в Web. Хипермедията е естествено разширение на хипертекста, т.е. съдържанието на всеки документ включва много повече освен текст - мултимедия, графика, видео, звук. Много типове медия в хипермедийния документ могат да са свързани към други хипермедийни документи. В Web страницата например може да свържете снимката с документи, така че когато потребителя я натисне, браузъра да открива документа, към който тя се отнася.

Осъществяване на връзка между отделните документи

Връзката между отделните документи се осъществява по следния начин:

1. Потребителят активира, чрез натискане на левия бутон на мишката върху избрания хипертекст или хипермедия, адреса (URL) на даден документ;

2. Компютърът се свързва със сървъра и изисква съответния документ от него. Сървърът е програма в Web, която отговаря на заявките на браузърите за документи;

3. Сървърът отговаря на заявката като изпраща поискация от него документ, заедно с цялата информация съдържана в него – изображения, звук и т.н.

Hypertext Transfer Protocol
Hypertext Transfer Protocol (HTTP) се нарича езика, на който “разговарят” компютъра- klient и сървъра. HTTP протоколът е предложен от Berners–Lee през 1990г. в Женева, Швейцария.

Hypertext Markup Language

Web страницата е хипермедиен документ.

HTML (Hypertext Markup Language) е езика, на който се пишат Web страниците. Самите Web страници се съхраняват в обикновен текстов файл с HTM или HTML разширение на файла. Основната цел на HTML е да описва как да се форматира съдържанието на текста в Web страницата. Например, HTML таговете (етиети, маркери) определят кога текста да се представя с подчертаване или кога част от текста е форматиран като заглавие. Някой HTML тагове също карат Web браузъра да показва изображения или да форматира съдържанието като таблица. Най-важното, HTML таговете могат да свързват дума или фраза с друг документ в Интернет. Накратко, Web страницата е комбинация от това, което трябва да бъде визуализирано (напр. текст) и начина, по който да бъде визуализирано (HTML тагове, които го форматират).

HTML е основната технология, контролираща това, което един Web браузър показва на екрана. Независимо колко добре сте запознати с другите Web технологии, ще установите, че е невъзможно да създавате динамични Web страници, без да разбирате HTML.

HTML първоначално е проектиран с цел да могат учените да създават текстово-базирани документи, съдържащи както команди за елементарно форматиране (известни като markup), така и препратки към друга информация (наричани хипертекст или хипервръзки). Например, един документ за земетресения може да съдържа препратка към друг документ относно тектониката на земните плочи, написан от друг учен. Създателите на HTML никога не са си представяли, че тази технология ще се окаже толкова мощна и полезна, че да стане основната причина за разрастването на Интернет и съответно World Wide Web.

Търсене в интернет

В WWW има милиони страници. Ако бродите в него безцелно, от време на време може да срещнете нещо, което да ви заинтригува. Много
често обаче се нуждаем от информация по определен въпрос, без да знаем къде се намира тя. Тогава изпадаме в ситуация подобна на търсенето на конкретна книга в огромна библиотека, без каталог на своите милиони книги, произволно наредени по рафтовете. Това означава, че и при WWW се нуждаем от инструмент, с който да намерим къде се намира нужната ни информация. Този инструмент представляват средствата за търсене.

Съществуват три основни вида средства за търсене:

− Виртуални библиотеки;
− Указатели (directories);
− “Машини за търсене” (search engines).

Виртуалните библиотеки и указателите са подходящи за по-общи въпроси, защото при тях търсим главно по тематика, чрез преглеждане на списъци. Използването на машините за търсене е препоръчително за по-конкретни въпроси, тъй като при тях задаваме запитване с ключови думи или фрази.

Съществуват и т.нар. метасредства за търсене. Те предават запитването на потребителя едновременно на няколко средства за търсене.

Методи на търсене

Виртуални библиотеки

Виртуалните библиотеки представляват сбирка от информационни ресурси, които са разкрити, подбрани, описани, оценени и организирани тематично от хора нар. cybrarians. При виртуалните библиотеки търсенето се осъществява чрез система от йерархично подредени тематични списъци. От тези списъци избираме от по-общото към по-конкретното, докато стигнем до темата най-близко до нашите потребности. При някои виртуални библиотеки може да се търси и по ключови думи. Виртуалните библиотеки внасят известен порядък в Интернет.

Предимства: малък информационен шум, подбрани са най-добрите ресурси, дава се описание, а понякога и оценка на ресурсите, често обхванатите теми са развити в голяма дълбочина

Недостатъци: сравнително малък обхват по тематика и брой ресурси, сравнително бавна актуализация
Указатели

По своята организация указателите приличат на виртуалните библиотеки, но за разлика от тях се изграждат и актуализират до голяма степен автоматично. И тук обхванатите ресурси са подредени иерархично - най-често по тематични рубрики, а понякога на имена на географски обекти, фирми и т.н.

Предимства: много по-пълни са от виртуалните библиотеки, редовно актуализирани

Недостатъци: дават по-оскъдна информация за намерените ресурси, липсва контрол на качеството

Машини за търсене

Машините за търсене са софтуер, който позволява извличане на информация по ключова дума или фраза. Резултатът от заявката за търсене е списък от Web страници, отговарящи на условията, поставени в заявката.

Как работят машините за търсене?

Те имат 3 основни елемента:

− Spider (паяк) - програма, която посещава Web страницата, прочита я, посещава страниците свързани с нея. Паякът се връща от време на време към тази страница и търси промени;
− Index - всичко, което паякът намери се копира в index, като периодично се обновява. Понякога минава време между I и II стъпка - намиране и индексиране на страницата, в което време тя не е достъпна;
− Search engine software - програмата, която пресява милионите страници в индекса, за да отдели тези, които отговарят на заявката и да ги подреди по важност.

Супермашини

Понеже нито една от съществуващите търсещи машини не обхваща повече от една трета от всички Web страници, са създадени т. нар. супермашини. Те представляват метасредства: предават запитването на потребителя на няколко машини, които търсят едновременно. Получените
результати се проверяват от супермашиналата за дублиране, подреждат се и се показват под формата на Web-страница.

Изрази, използвани при търсене по ключова дума или фраза

Операторите са правилата или специфичните инструкции, които се използват при създаването на “заявка”, когато търсим по ключова дума или фраза. Добре дефинираната заявка увеличава многократно шансовете да бъде намерена търсената информация. Някои от машините за търсене, притежават свои собствени оператори, но съществуват и такива, които са общи за повечето. Ето и най-често използваните:

Булеви оператори

В тази група попадат **AND**, **OR** и **NOT**, които свързват думите и фразите (наричани по-долу условия) в една заявка. Тези оператори **винаги** се пишат с главни букви.

- **AND** изисква и двете условия да се съдържат в търсения документ
- "blue AND red" (син и червен);
- **OR** изисква поне едно от условията да присъства в документа
- "blue OR red" (син или червен);
- **NOT** изключва всеки документ, който съдържа даденото условие ("NOT blue" (не син)).

Плюс/минус

Не оставяйте интервал между оператора и условието, което го следва.

- Поставянето на + преди условието връща само тези документи, които съдържат условието. Действието му е подобно на Boolean **AND** ("+учебник");
- Поставянето на "-" преди условието връща само тези документи, които не съдържат условието. Действието му е подобно на Boolean **NOT** ("-учебник").

Фраза

Думи оградени в двойни кавички означават търсене по точна фраза.

Пример: "учебник за начинаещи"

33
Пресичане

Използва се част от думата, за да се изградят различни нейни вариации, които да се търсят.

Пример: "sing*" (пея*). Написано по този начин, ще се търсят документи, които съдържат подобни думи – sing, sings, singer, singing и singalong.

Как да търсим успешно?

Търсенето на определена информация може да се окаже доста сложно, дори невъзможно, ако не е добре замислено. Ето защо е необходимо:

− Предварително да се разучи програмата, с която ще се осъществи търсенето. Разбира се, като начало не е нужно да се знае всичко за нея, а само информацията необходима, за да започне търсенето;
− Получаването само на необходима информация се осъществява с помощта на по-сложните методи на търсене. Използвайки операторите, по-бързо и лесно ще достигнете до желаната цел;
− В търсенето по ключови думи, започнете с не повече от две или три програми за търсене. От секцията Help на съответната програма, може да научите как да изградите заявката така, че да се постигне максимален ефект.

Търсене по ключова дума

Има няколко нива на сложност в търсенето по ключови думи.

1. Разговорен език - Използвайте го при създаване на заявката. Yahoo е особено ефективен като начало, защото при него паралелно може да се търси по ключова дума и по тема. Като указател с най-голям брой директории, неговите поддиректории стават толкова подробни, че лесно се намира групата от желани документи. Ако е необходимо може да се търси по ключова дума в определена поддиректория. В AltaVista е позволено търсене чрез въпрос. За да се получи желания резултат, не трябва да се забравя въпросителния знак в края;

2. Търсене със средна степен на трудност - Осъществява се с помощта на разгледаните вече оператори. Понякога трябва да се използват различни машини за търсене, докато се достигне желания резултат;
3. Търсене с висока степен на трудност - Представлява използване на машини за търсене, притежаващи огромна база от данни и способност за търсене по сложни заявкки. Пример за такива програми са AltaVista, HotBot, Fast и NorthernLight. Резултатът върнат от тях е огромно количество документи, от които в първите 20-30 е най-вероятно да откривате търсената информация, понеже в началото се появяват тези, които отговарят максимално на подадената заявкка.

Търсене по тема

В сравнение с търсенето по ключова дума, търсенето по тема е много по-просто. То започва с голямо количество тематични категории и продължава до достигане на специфична тема. Преимуществото му е в значително по-високото качество на предлаганите като резултат документи. Това се дължи на факта, че всички документи са прегледани преди да бъдат посветени в дадена категория. Но тъй като това изисква време, използваната база данни е значително по-малка от тази на машините за търсене и следователно броя на намерените документи е по-малък.

Обновяването на базата данни, с някой изключения, отнема седмици, а понякога дори и месеци. При машините за търсене, които събират и обновяват своята информация автоматично, тази процедура отнема един или два дена. Ето защо, когато се нуждаете от текуща информация трябва да използваме услугите на машините за търсене т.е. търсене по ключова дума.

Полезни насоки и информация

1. Запазете адресите на използваните програми за търсене в Bookmarks. Запазете също така и постигнатите резултати, ако смятате, че често ще имате нужда от тях;

2. Програмите за търсене, опитвайки се да подобрят своята работа, постоянно правят промени в съдържанието на базата им с данни, индексирането и критерия за връщане на поисканите резултати. Ето защо ако направите една и съща заявкка през определен период от време, ще получите различни резултати. Тези промени се извършват по-често при машините за търсене по ключова дума, отколкото при тези с тематично търсене;
3. Докато търсите може да попаднете на интересна и дълга статия, която не желаете да четете или разпечатате в момента, но с интерес бихте прегледали по-късно. За целта маркирайте целия текст, копирайте го и го запазете в Word документ, който ще прегледате на спокойствие и редактирате, запазвайки интересуващите ви части;

4. Някой сайтове позволяват отстраняването на графиките. Това позволява по-бързо търсене при бавна връзка;

5. Всяка програма за търсене има свой начин, по който определя реда на показване на търсените документи. Най-често първи се появяват документите, съдържащи ключовата дума в заглавието или в първите си редове. За някои машини на търсене близостта и честотата са също фактори, определящи позицията на съответния документ;

6. Начина, по който се индексира информацията, също може да бъде полезен при избора на програма за търсене и оформяне на заявката. Съществуват три метода на индексиране:

− Текстов - включва всички думи и адреси. На практика всяка програма има филтри, които премахват думи считани за незначими и неизползваеми за търсене;

− Ключова дума - включва най-често срещаните думи и изрази. Ако дадено име или термин се среща един или два пъти, то той най-вероятно няма да е отбелязан при индексирането. Това е най-използванят и бързо развиващ се метод на индексиране;

− От човек - осъществява се от хора, които преглеждат документите и сайтовете, и избират най-подходящите думи и фрази описващи съдържанието. Този метод се използва основно при виртуалните библиотеки и търсенето по теми;

9. Съществуват и други начини за извличане на информация от Интернет, без да се използва World Wide Web. Това са WAIS, Archie, Veronica, Gopher и ftp, които предхождат WWW.
<table>
<thead>
<tr>
<th>Термин</th>
<th>Обяснение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Английски</td>
<td>Български</td>
</tr>
<tr>
<td>Applet</td>
<td>Аплет</td>
</tr>
<tr>
<td>Archive</td>
<td>Архив</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Физическа характеристика на телекомуникационна система, която показва скоростта на прехвърляне на данните. При аналоговите системи се измерва в цикли за секунда (Hertz), а при цифровите в двоични битове за секунда (bit/s).</td>
</tr>
<tr>
<td>Browser</td>
<td>Браузър</td>
</tr>
<tr>
<td>Bridge</td>
<td>Мост</td>
</tr>
<tr>
<td>CGI (Common Gateway Interface)</td>
<td>Интерфейс към Web сървъра, реализиран чрез CGI скриптове, с помощта на които функционалността му се увеличава многократно. CGI скриптът е програма, която се изпълнява на сървъра като отговор на запитване или заявка на потребителя. CGI скриптове могат да се пишат на всеки програмен език, но на практика се използват два езика: Perl и C.</td>
</tr>
<tr>
<td>Client</td>
<td>Клиент</td>
</tr>
</tbody>
</table>
| Client/Server | Клиент/Сървър | Основен комуникационен модел в съвременните компютърни мрежи, при
който за едно приложение се използват едновременно ресурсите на сървъра и клиента. Трябва да се има предвид, че сървърът и клиентът се различават по програмните си функции, а не по своето месторазположение, т.е. могат да бъдат разположени на един и същи компютър. Всеки клиент в този смисъл ползва ресурсите на сървъра. Свързването на един потребител към друга машина от мрежата реализира този модел и потребителя се явява клиент на отсрещната машина.

Computer Network

Среда, в която два или повече компютъра са свързани помежду си посредством кабел, модем или друг вид връзка и си взаимодействат в тази среда с помощта на специализирано програмно осигуряване, инсталирано на всеки един от тях.

Cookie

Малък файл, в който сайта може да записва данни за избора на потребителя, които да използва по-късно при връщане на отговор.

DNS (Domain Name System) server

Специализиран сървър (компютър) в Интернет, който се грижи за преобразуването и съответствието между имена и IP адреси. За всяка една област в Интернет трябва да има поне един сървър на имената.

Domain name

Имената на домейни (област) позволяват към IP адресите да се асоциират буквено-цифрови имена, с чиято помощ компютрите могат да се групират по географски принцип или по тяхната принадлежност към някаква организация. Всяко име на област е изградено на йерархичен принцип – състои се от отделни части разделени с точка, като най-дясната част представлява име на област, която е най-високо в йерархията (то се нарича още “top-level domain” - имена на области на най-високо ниво).

Downloading

Процес, при който се премества файл или програма от компютър в мрежата върху използваня в момента от потребител компютър.

E-mail

Електронна поща. Интернет услуга, чрез която човек може да изпрати на друг, независимо от разстоянието или местоположението, просто текстово съобщение и/или произволни файлове, съдържащи изображения, звук, видеофилми.

FTP (File Transfer Protocol)

Протокол за пренасяне на файлове. Дава възможност за трансфер на файлове между два компютъра.
<table>
<thead>
<tr>
<th>Gateway</th>
<th>Шлюз</th>
<th>Виж Router (Маршрутизатор).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Хост</td>
<td>Компютър, през който потребителите могат да използват услугите предоставени от мрежата.</td>
</tr>
<tr>
<td>HTML (Hypertext Markup Language)</td>
<td>Език за хипертекст</td>
<td>Език, описващ форматирането на информацията във всяка Web страница. Това е основната технология, контролираща какво и как показва един Web браузър.</td>
</tr>
<tr>
<td>HTTP (Hypertext Transmission Protocol)</td>
<td>Хипертекстов протокол</td>
<td>Мрежов протокол, чрез който се осигурява достъп до документите в Web. Представлява още езика, на който си говорят всеки Web-сървър и Web-клиент.</td>
</tr>
<tr>
<td>Hyperlink</td>
<td>Хипервръзка</td>
<td>Хипервръзката представлява част от Web страница, която с едно натискане на мишката довежда потребителя до изображения, видео и аудио клипове, или други Web страници. Всеки текст или част от картина може да бъде хипервръзка.</td>
</tr>
<tr>
<td>Hypermedia</td>
<td>Хипермедиа</td>
<td>Термина хипермедиа е естествено разширене на хипертекста, т.е. съдържанието на всеки документ включва освен текст още и графика, видео, звук (които заедно обозначаваме като мултимедия). Всеки тип медиа в хипермедийния документ може да се свърже към друг хипермедийни документи.</td>
</tr>
<tr>
<td>Hypertext</td>
<td>Хипертекст</td>
<td>Метод за организация на информацията, описвайки способността документи да се съвързват заедно, използвайки думи и фрази. Има две интересни характеристики: 1. Не налага ред или йерархия в информацията – само връзки. Така хипертекста поддържа информацията организирана по начин, подобен на този в човешкия мозък. 2. Позволява информацията да има различни връзки към друга информация.</td>
</tr>
<tr>
<td>Interconnection</td>
<td>Физично и логично свързване на телекомуникационни мрежи, от една или различни организации, с цел потребителите да могат да разговарят помежду си или да използват услуги, предлагани от тях или друга организация.</td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>Интернет</td>
<td>Две или повече мрежи, свързани помежду си посредством специализирани устройства, които осъществяват маршрутизацията на данните между различните мрежи на основата на множеството от протоколи TCP/IP.</td>
</tr>
<tr>
<td>Intranet</td>
<td>Инtranет</td>
<td>Понятие, появило се в края на 1995 година, отразяващо тенденцията за усвояване на</td>
</tr>
</tbody>
</table>
стандартните Интернет информационни технологии и услуги в рамките на съществуващи корпоративни компютърни мрежи. Това означава интегриране на TCP/IP протоколи и услуги към протокола на една вътрешно корпоративна мрежа. Самата мрежа може да бъде или не свързана към Интернет.

IP address Интернет адрес

Представлява 32-битово число, обикновено записано като 4 десетични числа (окети или байта), разделени с точки, например 194.141.13.68. IP адреса идентифицира компютъра в Интернет. Всеки един IP адрес се състои от две части: адрес на мрежа и адрес на компютър в рамките на неговата мрежа.

IRC (Internet Relay Chat) Разговор по Интернет

Позволява разговор в реално време, чрез текстови съобщения, между хора свързани в мрежа.

ISP (Internet Service Provider) Интернет доставчик

Компания, осигуряваща достъп до Интернет. Съществуват хиляди ISPs, всеки от които предлагат различни условия, цени и схеми на плащане за своите клиенти.

Jargon Жаргон

Термин, описващ множеството съкрашения, които се използват в мрежата Интернет. Ето някой от най-често използваните:

- **ASAP** – As Soon As Possible -> възможно най-бързо
- **BR** – Best Regards -> най-добри пожелания
- **BTW** – By The Way -> между другото
- **FAQ** – Frequently Asked Questions -> често задавани въпроси
- **FYI** – For Your Information -> за ваша информация
- **IAC** – In Any Case – при всички случаи
- **LOL** – Laughing Out Loud -> умирам от смех
- **OTOH** – On The Other Hand -> от друга страна
- **PLS** – Please -> моля
- **TIA** – Thanks In Advance -> предварително благодаря
- **TYVM** – Thank You Very Much -> благодаря много
- **XOXO** – Xugs And Kisses -> целувки и прегръдки

Java Програмен език, създаден от Sun Microsystems Inc. Базиран е на обектно-ориентирания подход в програмирането и е платформено независим, т.е. написаните на него програми могат да се изпълняват на различни системи, работещи с различни операционни системи. С Java могат да се създават всякакви приложения – най-често това са аплети.
JavaScript е обектно ориентиран скриптов език, създаден от Netscape Communications Corporation. Скриптовете представляват блокове програмен код, който е "вграден" в Web страницата и се интерпретира по време на изпълнение.

LAN (Local Area Network) Локална мрежа Компютърна мрежа, която обединява компютри, периферни, мрежови и други устройства, разположени в отделна сграда или в малка географски ограничена област.

Link Връзка Връзка между два компютъра или документа в мрежа.

Mbit/s Мбит/c Мярка, показваща скоростта на прехвърляне на данните при цифровите системи – милион бита за секунда.

Modem Модем Устройство, което изпраща и приема данни по телефонната линия до и от друг компютър, като ги преобразува в съответния формат.

MTA (Mail Transfer Agent) Програма на сървъра, която транспортира предаването и изпращането на e-mail между два компютъра свързани в мрежа.

MUA (Mail User Agent) Програма инсталирана на Client, през която потребителя проверява своя e-mail. Такива програми са Outlook Express, Netscape MailClient, The Bat, Eudora и т.н.

Network Protocol Мрежови протокол Правила, които описват начина на комуникация между два компютъра в мрежа.

NIC (Network Interface Card) Мрежова карта Хардуерна част на компютъра, която се използва за изпращане и получаване на сигнали до и от други устройства, с които той е свързан в локална мрежа.

NNTP (Network News Transmission Protocol) Протокол за четене и пренасяне на USENET news през TCP/IP.

Node Възел Всеки компютър или устройство, свързан към компютърна мрежа.

Perl Език за програмиране, с който се създават базирани на сървъра приложения.

Ping Програма, която изпраща информация, предизвикваща съответен отговор от търсената машина. По този начин може да се измери времето, за което се осъществява цикъл въпрос-ответов между двете машини.

Plug-in Допълнителен програмен модул, инсталиран към Web браузър. Задачата му
е да обработи правилно и бързо определени текстови, графични, звукови, видео и други видове формати, които са вмъкнати в Web страница. Предназначен е за визуализиране по подходящ начин на информация, което не е зададено в съответствие с езика HTML. Специфични са за всеки браузър и в повечето случаи е необходимо да бъдат инсталирани допълнително.

<table>
<thead>
<tr>
<th>POP (Post Office Protocol)</th>
<th>Протокол, използван при четенето на e-mail.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal</td>
<td>Термин, обикновено използван за сайт, предлагащ огромно количество ресурси и услуги.</td>
</tr>
<tr>
<td>Router</td>
<td>Маршрутизатор Специализирано мрежово устройство, което извършва маршрутизация с цел прехраняване на информация между два произволни компютъра в Интернет, всеки от които е свързан към своя локална мрежа, като тези мрежи могат да бъдат разнотипни.</td>
</tr>
<tr>
<td>Routing</td>
<td>Маршрутизация Процес (дейност), подобен на регулирането на уличното движение. Изпълнява се от маршрутизатори, които прочитат IP адреса на получателя на информацията, изпратена от даден компютър и я изпращат в правилната посока. Възможно е информацията да премине през няколко маршрутизатора, преди да достигне крайната си цел.</td>
</tr>
<tr>
<td>Server</td>
<td>Сървър Система/компютър, който осигурява услуги за други системи или компютри в компютърната мрежа.</td>
</tr>
<tr>
<td>Surfing</td>
<td>Сърфиране Процес на разглеждане на сайтове в Интернет.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>(Transmission Control Protocol/Internet Protocol) TCP и IP са два от най-важните протоколи използвани в Интернет. С тези термини всъщност се описват два софтуерни механизма, позволяващи на множество компютри да обменят данни помежду си.</td>
</tr>
<tr>
<td>Top Level Domain</td>
<td>Име на област на най-високо ниво (представява най-дясната част на domain name – например com, net, org, bg, it и т.н.)</td>
</tr>
<tr>
<td>URL (Universal Resource Locator)</td>
<td>Адрес на ресурс в Интернет, Унифициран локатор на ресурси Уникален индентифициращ адрес за всеки един ресурс в Интернет. Състои се от три части - тип на протокола за достъп, име на сървър и разположение на ресурса вътре в сървъра.</td>
</tr>
<tr>
<td>USENET News</td>
<td>Новини USENET е самостоятелна система, която създава среда за дискусии и информационен трансфер между хора с</td>
</tr>
</tbody>
</table>
общи интереси, разделени на групи. Предаването на новини чрез Интернет е услугата NEWS, която се реализира от NNTP протокола.

Videoconference Видеоkonферения
Видеоконференциите са способ за предаване на звук и картина между две или повече физически разделени лица. Идеята е участниците да могат да разговарят един с друг, да се чуват и да се виждат – все едно са на едно място. Постига се с помощта на камери и микрофони, които да предават съответно видеообраза и звука, монитори, които да изобразяват видеокартината и високоговорители – за звука. Допълнително може да има управляващи устройства, чрез които да се дава думата на един или друг участник в разговора.

WAN (Wide Area Network) Глобална мрежа
Компютърна мрежа, която обединява компютри, периферни устройства, мрежови и други устройства, разположени в обширна географски неограничена област.

Web page Web страница
Хипермедиен документ, който се създава с помощта на езика HTML и се съхранява в обикновен текстов файл с разширеие HTM или HTML. Включва комбинация от информацията, която трябва да бъде визуализирана и начинът, по който да бъде визуализирана.

Web site Сайт
Съвкупност от взаимно свързани Web страници с общо предназначение.

WWW (World Wide Web) Обикновено се използва само Web, Хиперпространство
Представлява хипертекстова система - сбор от статични и интерактивни HTML (хипермедийни) документи, които са свързани помежду си. Достъпът до тях се осъществява през HTTP протокол.